Since the introduction of sheaves into mathematics in the 1940s a major theme has been to study a space by studying sheaves on that space. This idea was expounded by Alexander Grothendieck by introducing the notion of a topos. The main utility of this notion is in the abundance of situations in mathematics where topological intuition is very effective but an honest topological space is lacking; it is sometimes possible to find a topos formalizing the intuition. The greatest single success of this programmatic idea to date has been the introduction of the étale topos of a scheme.
Equivalent formulations
Let C be a category. A theorem of Giraud states that the following are equivalent:
- There is a small category D and an inclusion C Presh(D) that admits a finite-limit-preserving left adjoint.
- C is the category of sheaves on a Grothendieck site.
- C satisfies Giraud's axioms, below.
A category with these properties is called a "(Grothendieck) topos". Here Presh(D) denotes the category of contravariant functors from D to the category of sets; such a contravariant functor is frequently called a presheaf.
Giraud's axioms
Giraud's axioms for a category C are:
- C has a small set of generators, and admits all small colimits. Furthermore, colimits commute with fiber products.
- Sums in C are disjoint. In other words, the fiber product of X and Y over their sum is the initial object in C.
- All equivalence relations in C are effective.
The last axiom needs the most explanation. If X is an object of C, an equivalence relation R on X is a map R→X×X in C such that all the maps Hom(Y,R)→Hom(Y,X)×Hom(Y,X) are equivalence relations of sets. Since C has colimits we may form the coequalizer of the two maps R→X; call this X/R. The equivalence relation is effective if the canonical map
R→X Xx/RX
is an isomorphism
Examples
Giraud's theorem already gives "sheaves on sites" as a complete list of examples. Note, however, that nonequivalent sites often give rise to equivalent topoi. As indicated in the introduction, sheaves on ordinary topological spaces motivate many of the basic definitions and results of topos theory.
The category of sets is an important special case: it plays the role of a point in topos theory. Indeed, a set may be thought of as a sheaf on a point.
More exotic examples, and the raison d'être of topos theory, come from algebraic geometry. To a scheme and even a stack one may associate an étale topos, an fppf topos, a Nisnevich topos...
Counterexamples
Topos theory is, in some sense, a generalization of classical point-set topology. One should therefore expect to see old and new instances of pathological behavior. For instance, there is an example due to Pierre Deligne of a nontrivial topos that has no points (see below).
Tidak ada komentar:
Posting Komentar